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HIGHLIGHTS

o This work has discovered a novel alternative for chemical herbicides.

e Formulation BH4 showed the best evolution of CO2 and organic carbon content.

e Increased in microbial composition from bioherbicidal treated soil when compared to chemical herbicides.

e Absence of antagonism on Solanum lycopersicum seeds and seedlings when compared to the observed effect on tested weeds.
o All the formulations developed and tested during the study improve and sustain enzymatic activity.

ARTICLE INFO ABSTRACT

Article history: This work investigated the effect of variably formulated pesta granules containing wild and UV mutated
Pseudomonas aeruginosa and Lasiodiplodia pseudotheobromae on the rate of CO; evolution, organic carbon
content, enzymatic activity (acidic and alkaline phosphatase, dehydrogenases, urease and protease) and
representative soil microorganisms in the soils using different assay techniques. After the 35th day
period of experiment, the pesta granule formulation BH4 showed the best evolution of CO; (824 + 6.2 mg
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Non-target CO, kg™ soil hr™") as against control treatment (689 + 3.7 mg CO; kg™ soil hr™"). Enzymes activities,
Bioherbicide organic carbon content of 3.8% on the 15th day of study and stable representation of microorganisms that
Pesta granule include actinomycetes, fungi, heterogenous as well as soil nitrogen-mediatory bacteria were equally at
Soil organic carbon their maximum level BH4 treatments. The phytotoxic assay showed no inhibitory effect on Solanum
Agrosystems lycopersicum seeds and seedlings compared to the observed growth inhibition on the tested weeds
(Amaranthus hybridus and Echinocholoa crus-galli) which corresponds with positive control glyphosate
treatment. The glyphosate treated soil had the least critical results on parameters investigated during the
study. The order of bioherbicidal activity is BH4>BH2>BH6>BH3>BH1>BH5>positive control. Results
from this study confirmed the target efficacy of variably formulated pesta granules which is sustainable,
cheap, ecologically suitable and recent. This is in addition to recognizing the microbial-derived formu-
lations as characteristically potent alternative to chemical herbicides utility in agrosystems practice.
Further study of the underlining factor responsible for the bioherbicidal performances of the variably
formulated pesta granules and field trials are critical for their future commercialization.
© 2017 Elsevier Ltd. All rights reserved.
1. Introduction virus) over the past two decades (Bailey, 2010; Bailey and Falk,

2011; Bailey et al., 2010). This is due to the rising environmental
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impacts from the continuous use of chemical or synthetic herbi-
cides on the environment, human health, food safety and
ecosystem functionality cannot be downplayed albeit shifting
attention to bioherbicides (Glare et al., 2012). Furthermore, rising
research efforts into bioherbicides formulation and application was
premised on the emergence of acquired resistance response of
weeds to prolong synthetic herbicide treatments further encour-
aging them as viable, cost effective alternatives to controlling
pestilent weeds (Beckie et al., 1999; Heap, 2015).

Mycoherbicides which are derived from phytotoxic fungi e.g.
Collego (Collectotricum gloeosphoroides), ABG 5003 (Cercospora
rodmanii), CASET* (Alternaria cassia) and DeVine (Phytophthora
palmivora) are logically more popular than bacterioherbicides in
the classical as well as augmentative biological control of weeds,
particularly in agriculture (van Lenteren, 2012). In contrast, living
bacteria are less successfully applied in the fields as bioherbicides
because their sensitivity to changing ambient environmental con-
ditions. In addition, their inability to produce abundant exospsores
and maintain relatively stable genetic integrity in storage also
affected their popularity in bioherbicide formulations (Mejri et al.
2013). Ash (2010) defined formulated bioherbicides as a mixture
of the active ingredients, a carrier or solvent that delivers an active
ingredient to the target weeds. Boyette et al. (1991) as well as Hynes
and Boyetchko (2006) observed that such formulation must be
synergetic with a spectrum of chemical adjuvant that improves
their survival and potentiate their infectivity even in adverse
environmental conditions.

Mycoherbicides (Fusarium oxysporum, Lasiodiplodia pseudo-
theobromae) and bacterial herbicides (Pseudomonas fluorescens,
Pseudomonas aeruginosa) have been formulated into pesta in pre-
vious studies (Daigle et al., 2002; Shabana et al., 2003; Elzein et al.,
2008; Kohlschmid et al., 2009; Adetunji and Oloke, 2013; Yang
et al., 2014; Adetunji et al.,, 2017a,b,c).

Chemical Herbicides are used widely in the management of
weeds. Glyphosate is one of them and is the most widely utilized
chemical herbicide in the management of weeds. The worldwide
global market for glyophosate has been projected to 1.35 million
metric tons (Global Industry Analysts, 2011). The adverse effects of
glyphosate on the environment has been documented and they are
found to be the major agent for altering and reducing the biodi-
versity of various microbial communities both in aquatic an
terrestrial environment. (Thammavongs et al., 2008; Relyea, 2005).
Thus, there is a need to critically examine the efficacy of glyphosate
and the newly formulated bioherbicides on some key soil micro-
organisms involved in edaphic properties as actinomycetes, fungi,
and soil nitrogen-mediatory bacteria (Prashar et al., 2014). These
microorganisms play an important role in the enhancement of
biogeochemical processes, durable soil sustainability, and eventu-
ally support for ecosystems for sustainable agriculture (Newman
et al., 2016)

This study therefore evaluated the non-target effect of bio-
herbicidal formulations on soil microbiota measuring critical
parameters like enzymatic activity, carbon dioxide emission and
organic carbon contents comparison to a commercial chemical
herbicide (glyphosate).

2. Material and methods
2.1. Source of microorganism

The wild fungus (Lasiodiplodia pseudotheobromae A.].L. Phillips,
A. Alves & Crous) used in this study was isolated from Tridax
procumbens leaves. The inter transcribe spacer D1/D2 region char-
acterization of the bioherbicidal strain as Lasiodiplodia pseudo-
theobromae and coded C1136 with accession number KY432690

while Pseudomonas aeruginosa was isolated from the rhizosphere of
wheat plants in a previous study by Adetunji and Oloke (2013). The
isolated bacterium was identified as Pseudomonas aeruginosa and
coded C1501with accession number KF976394.

2.2. Mutagenesis

Using the protocol elucidated by Adetunji and Oloke (2013),
sterile plates each containing mycelia plugs of Lasiodiplodia
pseudotheobromae were exposed for 30, 60 and 90 min respectively
to UV light at 300 nm wavelength and 30 cm to the plates. There-
after, 5 mycelia plugs were extracted and used as inoculants of
potatoes dextrose broth. The wild strain for the purpose of the
study was coded WLp (control) while the mutant strains were
variably coded as Lp 30, Lp 60 and Lp 90 respectively.

Similarly, a wild strain of Pseudomonas aeruginosa was cultured
by the modified method of Evans et al. (2004). Bacterial cultures
were streaked on the entire surface of the Kings agar plates in
triplicates and later exposed to UV light of 254 nm at a distance of
30 cm for 30, 60, and 90 min respectively. After the exposure, the
plates were incubated at 37 °C for 48 h and the most distinct col-
onies observed were selected for further investigation. Irradiated
suspensions were later plated within 1 h of their exposure. Further,
their viability was determined by a formula (CFU remaining/by
initial CFU x 100). Control cultures unexposed to UV radiation were
also subjected to similar viability test. The wild strain was coded
WPa (control) while the mutants were variably coded as Pa30, Pa60
and Pa90 respectively.

Mutagenesis was carried out in order to determine whether
there will be an improvement in the activities of phytotoxic
metabolites from strains used in this study.

2.3. Preparation of pesta granule formulations

The procedure for the formulation of granular pesta was as
developed by Connick et al. (1991) and modified by Adetunji and
Oloke (2013) while the optimization level was done according to
Elzein et al. (2004). All the reagents were of analytical grade and
high purity. They were purchased from Lab trade Nigeria Ltd, Ilorin,
Kwara State, Nigeria. The semolina used in this study was obtained
from a supermarket and its a product of Dangote Flour Mills Plc,
Nigeria. The formulated granular pesta consists of the bioherbicidal
strains in addition to semolina (wheat flour, vitamins, and minerals),
kaolin (H»Al,Si,0g—H30.) and the adjuvants [glucose (CgH1206);
glycerol (C3HgO3); sucrose (C12H»2011); sucrose (CgH120g); dextrose
(CgH1206) and lactose (Cqi2H22011). The formulations were also
coded BH1, BH2, BH3, BH4, BH5, and BH6 respectively.

Their individual composition was as follows:

BH1 = semolina (32 g) + kaolin (6 g) + glycerol (20 ml) + WLp
+ Pa30 + glucose + sucrose + fructose + dextrose + lactose
sugar + peptone.

BH2 = semolina (32 g) + kaolin (6 g) + glycerol (20 ml) + Lp
90 + Pa 90.

BH3 = semolina (32 g) + kaolin (6 g) + glycerol (20 ml) + Lp
30 + glucose + sucrose + fructose + dextrose + lactose
sugar + peptone + Pa 30.

BH4 = semolina (32 g) +kaolin (6 g) + glycerol (20 ml) + Lp90
+ glucose + sucrose + fructose -+ dextrose + lactose
sugar + peptone + Pa 90

BH5 = semolina (32 g) + kaolin (6 g) +glycerol (20 ml)
+ WLp + WPa.

BH6 = semolina (32 g) + kaolin (6 g) +glycerol (20 ml) + Lp60
+ Pa60 + glucose + sucrose + fructose + dextrose + lactose
sugar + peptone.
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Fig. 1. Schematic model showing the experimental design performed for pesta granules application in soil.

The pesta granules were each later applied at the rate of 1.0g
granules/pot. Glyphosate (N-phoshonomethyl-glycine) was used as
a positive control after diluting the stock concentration to a final
glyphosate concentration of 1 g while a pesta granule without any
microorganism plus an adjuvant serves as the negative control. Pots
of 20 cm height x 10 cm width dimension were filled up to 2/3 of its
volume with previously prepared soil for the study.

The experimental design performed for pesta granules appli-
cation on soil activity and weeds is shown in Fig. 1.

2.4. Non-target effect of biological herbicide formulations on
critical soil microbial parameters

Soil samples which are loamy-sandy in nature were randomly
collected from Ladoke Akintola University Farm site at a depth of
20cm with a hand trowel. The soil samples in triplicate were
analyzed for pH (9.5), organic matter (0.83%) and organic carbon
(0.48%) immediately after collection. Thereafter, the soil samples
were sieved (2 mm sieve) and moistened prior to carrying out the
laboratory incubation experiments to evaluate their microbial
respiration rate, soil organic carbon and qualitative soil microbial
representation of each bioherbicide formulation (Anderson et al.,
1993).

2.4.1. 2.4.1microbial respiration rate (CO>)

Microbial respiration was measured according to Anderson et al.
(1993) by the rate of CO; production during incubation. Fifty grams
(50¢g) each of the sieved soil samples was collected in 500 ml
conical flask, amended with the pesta formulation and thoroughly
mixed using a stirrer. Chemical herbicides of Glyphosate and pesta
granules without the experimental soil microorganisms were used
as positive and negative control respectively. A neutral control
composed by soil without any input (neither glyphosate nor pesta

granules or adjuvant). Each treatment was arranged in triplicate,
thus a total of 24 flasks were involved in the experimentation. A
10 ml of 0.3 M NaOH solution in a glass vial was carefully suspended
in each experimentation flask with a string and sealed with a
rubber bung. A blank was also run to evaluate the quantity of CO, in
the flask. The flasks were incubated at 35 °C, taken out at 1, 5, 10, 15,
20, 25 and 35 days of incubation respectively with the vial content
carefully exchanged for new one each time while its collected
content is analysed. Added to the collected NaOH was 10 ml of
1 M BaCl; solution and a few drops of phenolphathalein. This was
titrated against 0.1 M HCIl solutions until the pink colour dis-
appeared. During the reaction 1 mol of CO; neutralizes 2 mol of
NaOH. The amount of CO; produced was calibrated as g/g of moist
soil/h (Anderson et al. 1993).

2.4.2. Soil organic carbon content

Soil organic carbon (OC) in the different bioherbicides treated
and control soil samples was determined by the partial oxidation
method of Walkley-Black procedure on 7th, 15th, 25th and 35th day
respectively. Using the same 50g of soil and formulated bio-
herbicides mixture (60-mesh) in an Erlenmeyer flask, 10 ml of 1N
K>Cr,07 and 10 ml of concentrated H,SO4 were added. After 30 min,
50 ml of deionized water, 3 ml of concentrated H3PO4 and 0.5 ml of
1% diphenylamine indicator were also added. The filtrate was later
titrated slowly with 1N FeSO4 solution until a green colour end
point was observed (Loeppert and Suarez, 1996).

2.4.3. Soil microbial representation

After day 1, 7, 15 and 35 respectively, bioherbicides treated soil
and chemical glyphosate control soils were evaluated for total
number of heterotrophic bacteria, fungi and N-bacteria using
selective media. This was carried out by dissolving 1 g of each soil
samples in 10 mL of distilled water and was serially diluted to
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10-7.0.1 mL of the dilution was plated on nutrient agar plates using
a sterilized L shaped glass spreader and incubated at 37 °C for 48 h
for bacterial growth. Similarly, nutrient casein agar plates incu-
bated at 30°C for 72 h were used for promoting the growth of
Actinomycetes. 0.1 mL soil dilution on potato dextrose agar with
100 ng/g streptomycin and incubation at 28 °C for 5 days was used
for fungal growth (Jahnel et al., 1999; Monkiedje and Spiteller,
2002; Araujo et al., 2003; Geetha and Jyothi, 2017).

The nitrifying and denitrifying bacteria medium were prepared
using a protocol developed by Wang et al. (2007). 1L of medium
containing the following; 1g of NaNO,, 1g of NayCOs3, 1g of
NaH;P0g4, 0.25 g of MnSOg4-4H,0, 0.01 g of; MgS04-7H,0, 0.03 g of;
K>HPO4 and amended with 0.75 g of 2% agar with pH of 7 was used
for isolating nitrifying bacteria. Similarly, 1 L of medium containing
0.5 g of potassium sodium citrate, 2.0 g of KNOs, 0.5 g of KH;POy4,
0.2 g of MgSO4 with pH 7.0 was used for isolation of denitrifying
bacteria. Incubation was carried out at 30 °C. The different media
used for the isolation of different microorganisms in this study was
pasteurized at 121 °C for 30 min.

2.5. Enzymatic activity

Soil samples from each experimental pot were instantly assayed
for enzymatic activities. This was carried out by mixing 5 g of soil
samples that has been exposed for 15days to various bioherbicidal
formulations (BH1, BH2, BH3, BH4, BH5, and BH6), positive control
and negative control. One gram of the soil sample from these
treatments were then mixed with 25 ml of MilliQ water and incu-
bated for 1.5 hat 30°C under continuous stirring (250 rpm). An
aliquot from the resulting solution was then utilised for the various
soil enzymatic quantification. Urease activity was performed by
ammonium release assessment (Nannipieri et al., 1979) while the
Soil phosphatase activity was determined using modified universal
buffer solution, and separated into acid phosphatase (pH 6.5) and
alkaline phosphatase (pH 11) on p-nitrophenylphosphate substrate.
After 1hat 37°C, the development of p-nitrophenyl was deter-
mined by spectrophotometer at 410 nm (Tabatabai, 1982). Soil
dehydrogenase activity was evaluated according to Garcia et al.
(1993) while the protease activity of each soil sample was by the
protocol of Ladd and Butler (1972).

2.6. Phytotoxicity assessment of bioherbicidal formulations

Fifty mL of sterile water was added to the different samples from

Table 1

each potted experimental soil and mixed thoroughly. Extractions
were performed at 50 °C in an orbital shaker at the speed of 130 g
for 24 h by centrifugation, treated with 50 mL ethyl acetate and
centrifuged again at 6000 g for 10 min. The ethyl acetate was later
removed from the supernatant using a separating funnel and dried
over sodium sulphate prior to vaporizing at 40 °C in rotary evapo-
rator. The crude extracts were then prepared into 1, 1.5 and 2 g L!
concentrations respectively and tested for pre-emergence bio-
herbicidal activity on Solanum lycopersicum L (tomato), Amaranthus
hybridus L (pigweed) and Echinocholoa crus-galli (L.) P. Beauv.
(barnyard grass).

Fifteen seeds each of Solanum lycopersicum, Amaranthus hybridus
and Echinocholoa crus-galli were immersed in 100 mL 5% sodium
hydrochlorite solution for 30 min, rinsed repeated (3x) with ster-
ilized water and placed separately on top of sterile Whatman No. |
filter paper (7 cm diameter) in triplicate set inside Petri dishes. The
measurement of germination rate was calculated using the formula:
Germination rate (%) = (Number of germinated seeds in treatment/
Number of germinated seeds in control) x 100. The radicle elon-
gation was determined using a calibrated meter rule.

2.7. Statistical analysis

The mean values were subjected to an analysis of variance using
SPSS (Version 21). Significant means were analyzed using Duncan's
multiple range tests at o = 0.05.

3. Result

3.1. Effect of bioherbicidal formulations on soil microbial respiration
(CO; release)

There was no significant difference (p = 0.05) in soil CO, emis-
sion rate (965 mg CO, kg~ ! soil hr~!) from the 1st to 5th day. After
the 35th day, BH4 treated soils produced the highest quantity of
CO, per kilogram soil per time (824mg CO, kg~ ' soil hr!)
compared to the negative control soil treatment that had 689 mg
CO, kg’l soil hr~. There was a gradual reduction in CO, release
from the formulation treated soil with increasing treatment days.
The glyphosate treated soil (positive control) had the least CO,
emission of 133 mg CO, kg~ ! soil hr~! and generated significantly
different (p = 0.05) values compared to the treated soils (Table 1).

Rate of CO2 emission (mg CO2 kg-1 soil hr-1) in bioherbicides soil treatment at different incubation periods (days).

Period (Days)

1 5 10 15 20 25 35

965 + 6.8° 965 + 4.2° 965 +7.1° 717 +5.3¢ 738 +5.1¢ 613 £3.2° 468 +4.1"
BH2 965 + 3.5° 965 +3.3° 965 +7.2° 953 +4.1° 961 +4.12° 824 +3.5° 795 +8.1°
BH3 965 +6.2° 960 + 3.6° 867 +4.5° 738 +5.9¢ 767 +3.7¢ 538 +4.3 497 +5.3°
BH4 965+3.7° 965 +4.1° 965 +7.2° 968 + 3.4° 997 +3.9° 833 +5.8° 824 +6.2°
BH5 965 + 6.5° 965 + 5.4° 761 +2.8¢ 703 + 3.5¢ 712 +5.67 694 +8.19 406 +4.7%
BH6 965 +6.2° 965 +3.7° 965 + 4.8° 923 +3.2¢ 945 + 6.8° 812+6.3° 763 +5.1¢
PC 965 +3.8° 860 +6.1° 650 + 3.6 586 +5.1° 592 +4.3% 338 +4.6% 133 +2.8"
NC 965 + 6.2° 965 +4.3% 965 +3.7° 715 +4.9° 775 + 4.3¢ 769 +5.8¢ 689 +3.7¢

Positive control = Negative control treatment with chemical glyphosate, Negative Control = Positive control without treatment. Effect of various
formulated bioherbicides on soil organic carbon (%) over different incubation periods. Values are means + standard error in triplicates (n = 3).
Means with different superscripts within the same column are significantly different (P=0.05). BH1 = semolina (32 g) + kaolin (6 g) + glycerol
(20 ml) + WLp + Pa30 + glucose + sucrose + fructose + dextrose + lactose sugar + peptone; BH2 = semolina (32 g) + kaolin (6 g) + glycerol
(20 ml) + Lp 90 + Pa 90; BH3 = semolina (32 g) + kaolin (6 g) + glycerol (20 ml) + Lp 30 + glucose + sucrose + fructose + dextrose + lactose
sugar + peptone + Pa 30; BH4 = semolina (32 g) +kaolin (6 g) + glycerol (20 ml) + Lp90 + glucose + sucrose + fructose + dextrose + lactose
sugar + peptone + Pa 90; BH5 = semolina (32 g) + kaolin (6 g) +glycerol (20 ml) + WLp + WPa; BH6 = semolina (32 g) + kaolin (6 g) +glycerol
(20 ml) + Lp60 + Pa60 + glucose + sucrose + fructose + dextrose + lactose sugar + peptone.
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3.2. Effect of various formulated bioherbicides on organic carbon
contents of soil

Organic carbon content was observed to vary with different
bioherbicide soil treatment (Fig. 2). The result showed increase in
the amount of organic carbon content in bioherbicide soil treat-
ments compared to the chemical treated soil (positive control) on
the 7th (2.0%), 15th (2.1%), 25th (1.9%) and 35th (1.5%) day respec-
tively. BH4 however had the highest organic carbon value of 3.8% on
day 15 of incubation compared to the 2.4% determined for the
untreated soil (negative control).

3.3. Non target effect of various formulated bioherbicides on soil
microorganisms

The plate-count results showed high representations of het-
erotrophic bacteria, actinomycetes, fungi and non-heterotrophic
bacteria categories in the bioherbicidal formulation treated soils
compared with the controls (Fig. 3A—E). BH4 formulation was
however observed to have different soil microbial presence
composed of heterotrophic bacteria, N-fixing bacteria and actino-
mycetes. Fungi were the least represented with a colony formed
unit (CFU) of 13 x 10°g~! in all treated soils while heterotrophic
bacteria and actinomycetes were more dominant with CFU of
100 x 106g~! soil and 48 x 10°g~! respectively. The negative
control soil treatments showed insignificant level of microbial
representations over the course of study.
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Fig. 2. Effect of various formulated bioherbicides on soil organic carbon (%) over
different incubation periods. Error bars represent the standard error of the
mean (n = 3). Effect of various formulated bioherbicides on soil organic carbon (%)
over different incubation periods. Error bars represent the standard error of
the mean (n = 3). BH1 = semolina (32 g) + kaolin (6 g) + glycerol
(20 ml) + WLp + Pa30 + glucose + sucrose + fructose + dextrose + lactose
sugar + peptone; BH2 = semolina (32 g) + kaolin (6 g) + glycerol (20 ml) + Lp
90 + Pa 90; BH3 = semolina (32 g) + kaolin (6 g) + glycerol (20 ml) + Lp
30 + glucose + sucrose + fructose + dextrose + lactose sugar + peptone + Pa 30;
BH4 = semolina (32 g) +kaolin (6 g) + glycerol (20 ml) +
Lp90 + glucose + sucrose + fructose + dextrose + lactose sugar + peptone + Pa 90;
BH5 = semolina (32 g) + kaolin (6 g) +glycerol (20 ml) + WLp + WHPa;
BH6 = semolina (32 g) + kaolin (6 g) +glycerol (20 ml)
+ Lp60 + Pa60 + glucose + sucrose + fructose + dextrose + lactose sugar + peptone.

3.4. enzymatic assay of bioherbicidal formulations

Biological Herbicide formulation 4 (BH4) exhibited more dehy-
drogenase, urease, phosphatases (alkaline and acidic) and protease
activities compared to both the positive and negative control
samples among all the mutant strains investigated. However the
negative control involving soil treated with chemical glyphosate
was observed with the least hydrogenase, urease and protease
activities. BH4, BH2, BH6 showed decreasing order of enzyme
activities which is above those noted for the negative control
(Fig. 4A—E).

3.5. effect of bioherbicidal formulations on non-target and target
plants

BH4 compared to other formulations and relative to the nega-
tive control treatments showed no recognizable inhibitory effect on
the seed germination rate of Solanum lycopersicum at different
concentrations as against the positive control with complete pre-
emergence inhibition. The highest radicle length at 1 (3.5 cm), 1.5
(2.3cm) and 2.0mg/L (1.8 cm) concentrations respectively were
observed for tomato seedlings treated with BH4 bioherbicidal
formulation while complete inhibition of radical elongation was
evident for seeds of pigweeds and barnyard grass. Furthermore, the
effect of BH4 on tomato was comparable to the result obtained for
the negative control (mixture of soil and pesta granules only).
(Fig. 5A). Similarly, the seeds of the target weeds used in this study
(Amaranthus hybridus and Echinocholoa crus-galli) showed
repressed germination activity at the various concentrations of BH4
treatment. The germination values for Amaranthus hybridus are
1 mg/L (18.4%), 1.5 (12.6), and 2.0 (9.3%) while 1 mg/L (16.2%),
1.5 mg/L (10.1%) and 2.0 mg/L (8.2%) were observed for Echinocho-
loa crus-galli (Fig. 5B).

4. Discussion

Bioherbicides are majorly phytopathogenic microorganisms or
microbial phytotoxins useful for the biological control of weed. It is
therefore logical to expect that certain level of allelopathic phe-
nomena would underscore their biochemical relationship with
economically beneficial and non-beneficial ambient organisms
(Hoagland et al., 2007). It was on this premise that scientific focus
shifted to investigating the non-target and target interactions of
phytopathogens, phytotoxins and allelochemicals of microorgan-
isms on weeds (Charudattan, 2001, 2005).

Many empirically tested bioherbicides posed no risk to the
environment, humans, and their immediate ecosystem hence they
have successfully complemented integrated weed management
systems (Hoagland et al., 2007; Adetunji et al., 2017b). Contrary to
popular report, Vey et al. (2001) noted that the phytochemicals of
some microorganisms used as bioherbicides may have a toxicity
level that could be harmful to humans. Microorganisms are
reported as major soil decomposers and contributor to ecosystem
service delivery by their direct participation in the breaking down
of organic matter, nutrient cycling and improvement of plant sur-
vival through asymptomatic symbiosis (Devare et al., 2007; Khan
et al.,, 2007). Growing concerns on the ecological implications of
chemical herbicide applications that may include soil pollution
from petrochemical wastes and residues on soil ecosystem func-
tions as well as diversity underscore the non-target concept of
bioherbicides. The understanding of the non-target effect of such
chemical and biological herbicides on soil microbial activities as
well as other economic crops is a necessary biological indicator that
guaranties the acceptability of herbicidals (Munoz-Leoz et al., 2013;
Zhao et al, 2013). Therefore, agricultural practises including
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diseases, pests and weeds control must aimed at preserving
significantly the activities of soil microorganisms’ biological and
ecological services capable of increasing economic crops resilience.
Suffice to say that selected agrosystem should biologically mitigate
the expediency of impact, production and application of bio-
herbicides on agroecosystems (Beulke and Malkomes, 2001; Cycon
et al., 2006; Yao et al., 2006).

During this study, we have utilized culture enrichment methods
in evaluating the effect of formulated pesta granules on available
soil microorganisms. We followed the culture enrichment methods
as previously carried out by Jahnel et al., 1999; Monkiedje and
Spiteller, 2002; Araujo et al., 2003; Geetha and Jyothi, 2017. We
couldn't employ the sequencing approaches for understanding the
soil microbial biota after application bio herbicides as previously
carried out by Liu et al., 2007; Li et al., 2014; Merlin et al., 2015;
Romdhane et al., 2016. However, Romdhane et al. (2016), sug-
gested the utilization of traditional enrichment culture method
together with sequencing approach to give a better knowledge of
soil composition and microbial diversity available in the environ-
ment where pesticides have been applied.

Also, the formulated bioherbicides involving the tested wild and
mutant microbes produced no non-target effects on the diversity of
microorganisms responsible for soil nitrogen economy (Cycon and
Piotrowska-Seget, 2007). Consequently, this caused increase in the
production of CO, compared to the chemically treated (glyphosate)
soils at the end of the experiment. The elevated rate of soil
microbial metabolic activities and microbial respiration as
confirmed by the communities of representative actinomycetes,
Fungi, heterotrophic bacteria, nitrifying and denitrfying bacteria
may have accounted for this. Similar results were observed in
separate works by Dhillion et al. (1996) and Kandeler et al. (1998)
who reported increase in soil microbial respiration from the
application of formulated bioherbicides. The non-target effects of
many chemical herbicides on critical soil geochemical and micro-
bial functions have equally been reported in literature (Kalia and
Gupta, 2004; Sebiomo et al, 2011; Zain et al, 2013). This

corresponds with observations from this study with glyphosate.
Additionally, glyphosate and 2,4—Dichlorophenoxyacetic acid
(2,4-D) herbicidal applications in agronomic doses, were reported
to be potent enough to deplete soil microbial respiration and causes
unstable microbial population (Wardle and Parkinson, 1990; Busse
et al., 2001; Zabaloy et al., 2008).

While the reason for the high performances of BH4 bioherbicide
formulation in this study is not fully understood, it may be
hypothesized to be due to the intricacy of biomodification or
underlying influence of UV irradiation relative to the exposure
time. The use of mutagenic UV lamp in genetically modifying
Pseudomonas aeruginosa and Lasiodiplodia pseudotheobromae to
potentiate bioherbcidal activity might be due to their genetically
improvement of their cellular components (Valero et al., 2007;
Braga et al., 2015). The range of enzyme activities observed
during the study is according to Sebiomo et al. (2011) and Hoagland
et al. (2007) a good reflection of soil healthiness and nutrient
recycling activities. This involves the transformation of organic
macromolecules into biolabile and bioaccessible plant beneficial
nutrients. The level of hydrogenase, phosphatase and urease in the
various experimental soils treated with the bioherbicidal formu-
lations and their observed phytotoxicity assessment results. Poor
sensitivity of economically valuable Solanum lycopersicum in this
study buttresses the efficacy and specificity of these pesta formu-
lations as weeds control agents. This recognized effect may hypo-
thetically translate to all other non-target crops and soil microbiota
with ecologically safe result. Furthermore, the enzymes, especially
hydrogenase serve as the best biomarkers of soil oxido-reduction
activities compared to the result obtained from the positive con-
trol experiment.

Among all the formulated bioherbicides, BH4 treated soils
showed the highest amount of organic carbon compared with the
others. The efficient delivery of soil ecological functions require
settled communities of microorganisms, dominant representation
of soil beneficial rhizopheric microbes. This population is often
hypersensitive and vulnerable to different levels of accumulated
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Fig. 4. A—E. Enzyme activities of investigated soils containing various treatment. Error bars represent the standard error of the mean (n = 3): (A) dehydrogenase (B) urease (C)

alkaline phosphatase (D) acidic phosphatase (E) protease.

toxic as well as recalcitrant chemical pollutants. The status of soil
organic matter which is critical to the thriving of promoting soil
microbial richness was reported to deplete with constant herbicide
treatments (Wardle and Parkinson, 1991; Savonen, 1997; Rath et al.,
1998; Sebiomo et al., 2011). Startton and Stewart (2002) recorded
similar non-target effect with glyphosate on soil biomass in Cana-
dian coniferous forests. Furthermore, Radivojevic et al., (2008) in
another study observed transitory effects of atrazine on soil
biomass-C while Fraser et al. (1994) noted 10—26% increase in
microbial biomass under organic management treatment i.e.
compost, farm yard manure (FYM) of soils (Leita et al., 1999; Cerny
et al., 2008). Stimulation of microbial biomass and activities by
organic carbon inputs has been well documented in literature (Ali,
1990; Ayansina and Oso, 2006; Tu et al., 2003).

Many economic plants are negatively affected by the fastidious
and more competitive use of necessary growth promoting soil fac-
tors. They equally depend on different types of soil microorganisms
to mediate soil nitrates economy through associations. This suggests
an interaction that promotes the coexistence of actinomycetes, ni-
trogen fixing and denitrifying bacteria in the ecological management
of the soil nutrient resources. The susceptibility of microorganisms

that manage the economy of soil nitrates and their eventual
assimilatory process under agro-chemical applications distress is
well documented (Singh and Singh, 1989; Frankenberger et al.,
1991; Arias and Fabra, 1993; Toziim-Calgan and Sivaci-Giiner,
1993; Martens and Bremner, 1993; Santos and Flores, 1995; Pell
et al., 1998; Fabra et al.,, 1997).

It was further observed that bio-herbicidal formulations from
this study exhibited comparatively different degree of target or
phytotoxicity effect on the seeds and seedlings of pigweeds and
barnyard grasses. The factor or mechanism responsible for this non-
target behaviour is currently unclear and may require further
studies. While various levels of seed and seedling inhibitory effects
of the BH formulations on Amaranthus hybridus and Echnocholoa
crus-galli were apparently comparable to that of chemical glypho-
sate treatments, Solanum lycopersicum observably exhibited very
high germination rate and seedling development values. The
herbicidal performance of BH4 among all the formulations is
interesting and further investigation may be required to fully
understand the underlying biological phenomenon. It is philo-
sophical to infer once again that the alternate damage by UV
exposure time of 90 min and repair from raw materials provided by
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the diverse sugars moieties by wild Lasiodiplodia pseudotheobromae
and the rhizospheric Pseudomonas aeruginosa accounted for the
effectiveness in the BH4 formulation. This study has therefore
identified the bio-herbicidal potency of different combination of
phytopathogenic Lasiodiplodia pseudotheobromae and rhizospheric
Pseudomonas aeruginosa as potential target-specific bioherbicide
formulation. It also projects the bioherbicidal formulations as
cheap, commercially amenable, environmental-friendly, alternative
weed control option that could compliment as well as integrate
with existing weeds management systems.
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